Statement of Verification

BREG EN EPD No.: 000518

Issue 03

This is to verify that the

Environmental Product Declaration provided by:

Mayflex UK Limited

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and
BRE Global Scheme Document SD207

This declaration is for: **1 metre of Excel Shielded Solid Conductor CAT6, CAT6A & CAT7A 4-pair Ethernet cables.**

Company Address

Mayflex UK Limited Unit 15, Junction Six Industrial Park, Electric Avenue Birmingham B6 7JJ

BRE/Global

EPD

tie

FBaker

14 August 2023

Date of First Issue

or BRE Global Ltd

Emma Baker Operator 19 September 2023 Date of this Issue

13 August 2028 Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit <u>www.greenbooklive.com/terms</u>. To check the validity of this statement of verification please, visit <u>www.greenbooklive.com/check</u> or contact us. BRE Global Ltd., Garston, Watford WD25 9XX. T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: <u>Enquiries@breglobal.com</u>

BF1805-C-ECOP Rev 0.3

Page 1 of 18

© BRE Global Ltd, 2022

Environmental Product Declaration

EPD Number: 000518

General Information

EPD Programme Operator	Applicable Product Category Rules				
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE 2021 Product Category Rules (PN 514 Rev 3.0) for Type III environmental product declaration of construction products to EN 15804:2012+A2:2019.				
Commissioner of LCA study	LCA consultant/Tool				
Mayflex UK Limited Unit 15, Junction Six Industrial Park, Electric Avenue Birmingham B6 7JJ	LCA Tool: BRE LINA A2 LCA Consultant: Bala Subramanian				
Declared Unit	Applicability/Coverage				
1 metre of Excel solid conductor CAT6, CAT6A & CAT7A shielded LSOH CPR Euroclass & UKCA compliant 4-pair Ethernet cables	Other (please specify). Product Specific				
ЕРД Туре	Background database				
Cradle to Gate with options	ecoinvent				
Demonstra	tion of Verification				
CEN standard EN 15	5804 serves as the core PCR ^a				
Independent verification of the declara	ation and data according to EN ISO 14025:2010				
	riate ^b)Third party verifier: ?at Hermon				
a: Product category rules b: Optional for business-to-business communication; mandatory	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)				
Co	mparability				
EN 15804:2012+A2:2019. Comparability is further dependent	programmes may not be comparable if not compliant with endent on the specific product category rules, system boundaries ause 5.3 of EN 15804:2012+A2:2019 for further guidance				

Information modules covered

	Produc		Const			Use stage				End-of-life			Benefits and loads beyond			
	Produc		Const	ruction	Related to the building fabric			ıbric	Relat the bu	ted to uilding	Ena-of-life			the system boundary		
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
V	$\mathbf{\nabla}$	$\mathbf{\nabla}$	V	V								$\overline{\mathbf{A}}$	$\mathbf{\Lambda}$	$\overline{\mathbf{A}}$	V	$\overline{\mathbf{A}}$

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

Made in PRC

В

Construction Product:

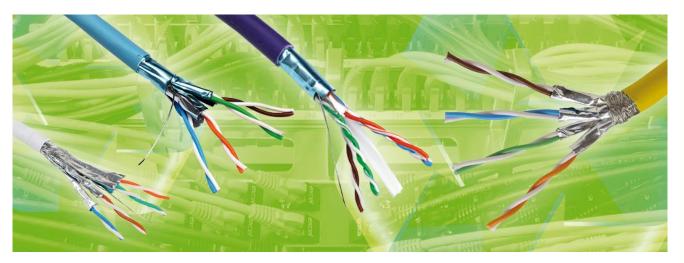
Product Description

Excel solid conductor CAT6, CAT6A & CAT7A shielded LSOH CPR Euroclass & UKCA compliant 4-pair Ethernet cables - designed and manufactured to meet and exceed the ISO, CENELEC and TIA standards and supplied in 305m REELEX® boxes or on 500m or 1000m reels. The cables deliver Class E, Class EA or Class FA performance over distances of up 90 metres and support applications up to 10GBASE-T, 10 Gigabit Ethernet. Available in a range of colours. This range of shielded Cables covers several different shield types – U/FTP, F/UTP, F/FTP and S/FTP, depending on the construction. Each cable consists of four twisted pairs of conductors, which are extruded into a single cable and wrapped with one or two screening layers. The screening layers – depending on the construction – consist of aluminium/polyester foils and for braided wire. The individual pairs are set at different twist ratios within the cable to ensure optimum performance and reduce NEXT. The combination of Aluminium foils and for braiding also contribute to excellent NEXT and Alien Crosstalk performance across this range of cables. In this EPD, Cat6A Cable U/FTP LSOH CPR Euroclass B2ca 305m - Box Ice Blue with the weight of 0.063 kg/m has been taken as a representative among their group.

Product name:		Item Code / Colour	Weight (kg/m)	
Excel Dual Cat6A Cable S/FTP L	SOH CPR Euroclass Dca 500m	100-915 – White	0.052	
Excel Solid Cat6 Cable F/UTP LS	SOH CPR Euroclass B2ca 305m	190-076 - Violet	0.058	
Excel Solid Cat6A Cable F/FTP L	SOH CPR Euroclass Dca 500 m	100-996 - Ice Blue	0.052	
Excel Solid Cat6A Cable F/FTP L	SOH CPR Euroclass B2ca 500m	190-996 - Ice Blue	0.053	
Excel Solid Cat6A Cable S/FTP L	SOH CPR Euroclass Dca 500m	100-914 - White	0.053	
Excel Solid Cat6A Cable S/FTP L	SOH CPR Euroclass B2ca 500m	190-914 - White	0.053	
Excel Solid Cat6A Cable U/FTP S 500m	S-Foil LSOH CPR Euroclass Dca	100-191 - Ice Blue	0.053	
Product name:		Item Code / Colour	Weight (kg/m)	
Number: 000518 Date of Issue:19 Septem 805-C-ECOP Rev 0.2 Page 3 of 18		er 2023	Expiry Date 13 August 202 © BRE Global Ltd, 202	

Excel Solid Cat6A Cable U/FTP LSOH CPR Euroclass B2ca 305m	190-191-305M - Box Ice Blue	0.063
Excel Solid Cat6A Cable U/FTP LSOH CPR Euroclass B2ca 305m	190-191-WT-305M - Box White	0.063
Excel Solid Cat7A Cable S/FTP B2ca LS0H 500m	190-910 –Yellow	0.058
Excel Solid Cat7A Cable S/FTP B2ca LS0H 1000m	190-910-1000M - Yellow	0.055

Technical Information


Property	190-076	190-910 and 190-910-1000M
Screen Type	F/UTP	S/FTP
CPR Rating	B2ca s1a d1 a1	B2ca s1a d1 a1
Single/Dual	Single	Single
Colour	Violet	Yellow
Conductor AWG	23	23
No. of Conductors	8	8
Conductor Insulation	PE	PE
Sheath Material	Co-Polymer LSOH	Co-Polymer LSOH
Cable Diameter	7.6mm	7.8mm
Temperature Range	-10C to +60C	-20C to +60C
NVP	70%	76%
Dielectric Strength	2.5kV for 2s	2.5kV for 2s
Max. Pulling Load	60N	60N
Min. Bend (installation)	8x Cable OD	8x Cable OD
Min. Bend (installed)	4x Cable OD	4x Cable OD

Note: Technical properties of Copper F/UTP cable- 190-076 and S/FTP cable - 190-910 and 190-910-1000M are listed above. Technical properties for other part numbers are listed in the Annex section.

Standard	Subject
ISO/IEC 11801-1:2017	Information technology - Generic cabling for customer premises: Part 1 General Requirements
IEC 61156-5:2020	Multicore and symmetrical pair/quad cables for digital communications - Part 5: Symmetrical pair/quad cables with transmission characteristics up to 1 000 MHz - Horizontal floor wiring - Sectional specification
EN 50173-1:2018	Information technology. Generic cabling systems - General requirements
EN 50173-2:2018	Information technology. Generic cabling systems - Office premises
BS EN 50288-3-1:2013	Multi-element metallic cables used in analogue and digital communication and control. Sectional specification for unscreened cables characterised up to 250 MHz
EN 50399:2011+A1:2016	Common test methods for cables under fire conditions. Heat release and smoke production measurement on cables during flame spread test. Test apparatus, procedures, results
IEC 60332-1-2:2004 + A12:2020	Tests on electric and optical fibre cables under fire conditions. Test for vertical flame propagation for a single insulated
ANSI/TIA 568-D:2015	Balanced Twisted-Pair Telecommunications Cabling and Components Standards

IEC 60754-2:2014	Test on gases evolved during combustion of materials from cables - Part 2: Determination of acidity (by pH measurement) and conductivity
IEC 61034-2:2005+A2:2020	Measurement of smoke density of cables burning under defined conditions – Part 2: Test procedure and requirements
EN 50575:2014 + A1:2016	Power, control and communication cables — Cables for general applications in construction works subject to reaction to fire requirements
IEEE 802.3bt (Type 4)	Compliant to IEEE 802.3bt (Type 4)
RoHS	Compliant to the Restriction of Hazardous Substances
WFD	Compliant to Waste Framework Directive
SCIP	Compliant - Does Not Contain Substances of Concern in Products

Note: Technical Standards of all products assessed within this average EPD

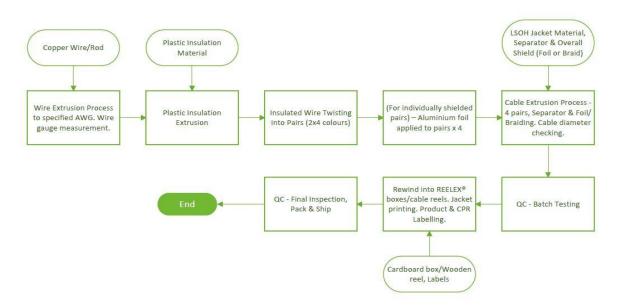
Main Product Contents

Material/Chemical Input	%
Copper	40
Polyethylene	10
LSOH (Co-polymer)	40
Aluminium	10

Note: Material composition of all products assessed within this EPD

Manufacturing Process

The manufacturing process for these cables involves several stages of extrusion starting with the pure copper rod and finishing with the completed cable, which consists of multiple elements. The first process is to extrude pure copper rod through a series of precision dies, heated and pulled (extruded) to achieve the required gauge of the wire (23 AWG). This is a highly accurate process requiring that the wire diameter is continually monitored as it exits the extruder. The next stage is to apply the wire insulation which requires another extrusion process, where the wire is drawn through the extrusion machine whilst the molten plastic insulation is injected around the wire. The plastic insulation is colour coded, and this process is repeated 8 times to provide the 8 colours required for the final cable (blue, blue/white, orange, orange/white, green, green/white, brown, brown/white).


Each pair of wires then go to the next process which twists them together. 2 reels of insulated wire are spun and pulled simultaneously to provide a precise and consistent twist. Each pair is given a slightly different twist length. No 2 pairs are the same. This is critical for the performance of the finished cable. For cables where the pairs are individually screened with foil, there is a further extrusion process to apply the foil around each pair. This is repeated 4 times for all 4 pairs.

EPD Number: 000518	Date of Issue:19 September 2023	Expiry Date 13 August 2028
BF1805-C-ECOP Rev 0.2	Page 5 of 18	© BRE Global Ltd, 2022

In the final process, all 4 pairs are again extruded into the final cable. This involves drawing the 4 pairs through the final extrusion process. The 4 pairs are drawn through a die together with a plastic separator, the LSOH cable jacket material (molten plastic), the overall foil or braid (where the foil is wrapped around the pairs and the braid is spun around the pairs) and any other elements that are used in the final cable design. As the cable exits the machine, it is passed through a water bath for cooling and its diameter is continuously measured.

The cable is reeled onto large reels initially and is finally re-reeled into REELEX® boxes or smaller wooden drums as required. The cable is tested to ensure compliance to the required standards. During the final boxing/reeling process, the cable is printed at 1m intervals with the cable details and batch details and the metre markings. Boxes/drums are also labelled with the cable and batch details, and also the CPR information.

Process flow diagram

CAT6 & CAT6A Shielded Cable

Construction Installation

Installation of data cables is generally carried out by manual labour, with teams of operatives pulling and dressing cables. No powered equipment or consumable items are used in this process, so no waste is generated during the installation. But there are some wastes at the end of the box, and it was assumed as 3% of the cables waste; they will be collected and sent to recycling.

End of Life

At the end-of-life the cables are removed manually. The cable will generally be collected by a registered broker for recycling and the process of separation takes place. Waste cables are shredded into small chips first and the metallic parts are separated from the plastics physically by using gravity and electrostatic separation techniques. The copper is recovered from other metallic elements by smelting and refining. This is used to make new cables. The plastics are also re-used for moulding into new plastic items. As a result of this experimental study, 97.2% of copper in waste cables is recovered and refined copper with 99.6 %Cu content is produced (Celik et al., 2019).

Life Cycle Assessment Calculation Rules

Declared unit description.

1 metre of Excel solid conductor CAT6 & CAT6A & CAT 7A shielded LSOH CPR Euroclass & UKCA compliant 4-pair Ethernet cables.

System boundary

This is a cradle-to-gate with options LCA, reporting all production life cycle stages of modules A1 to A3 and A4 and A5 (transportation and installation) and end of life stages C1-C4, and D in accordance with EN 15804:2012+A2:2019 and BRE 2021 Product Category Rules (PN 514 Rev 3.0).

Data sources, quality and allocation

The quantity used in the data collection for this EPD is the total quantity of CAT7A S/FTP manufactured as a proportion of the total manufactured during the data collection period (01/01/21-31/12/21) that was calculated at 0.68%. Mayflex receives the data cables from their manufacturing partners. Other cables and products are manufactured in addition to the CAT7A S/FTP cables; therefore, the allocation of electricity and water consumption and discharge are required, and this has been done according to the provisions of the BRE PCR PN514 and EN 15804. During the cable extrusion process no waste have been recorded.

Excel solid conductor are 4-pair ethernet cables and they are available in a range of colours and may have slightly differing mass per metre because the cables are in 305-metre REELEX® boxes or on 500m or 1000m reels which results in a change in the mass per metre. So, in this EPD the cable which has the highest mass per metre is taken as a representative among the group. The LCA analysis has been performed using 0.063 kg/m, which is for the CAT7A Cable S/FTP. Secondary data has been obtained for all other upstream and downstream processes that are beyond the control of the manufacturer (i.e., raw material production) from the ecoinvent 3.8 database. All ecoinvent datasets are complete within the context used and conform to the system boundary and the criteria for the exclusion of inputs and outputs, according to the requirements specified in EN15804 A2.

ISO14044 guidance. Quality Level	Geographical representativeness	Technical representativeness	Time representativeness
Very Good	Data from area under study.	Data from processes and products under study. Same state of technology applied as defined in goal and scope (i.e., identical technology).	n/a
Very Good	n/a	n/a	There is approximately 1-2 years between the Ecoinvent LCI reference year, and the time period for which the LCA was undertaken.

Specific European datasets have been selected from the ecoinvent LCI for this LCA. Manufacturer uses the national grid electricity for production, so therefore the national grid electricity dataset has been used for the LCA modelling (Ecoinvent 3.8). The quality level of time representativeness is also Very Good as the background LCI datasets are based on ecoinvent v3.8 which was compiled in 2021. Therefore, there is less than 5 years between the ecoinvent LCI reference year and the time period for which the LCA was undertaken.

Cut-off criteria

All raw materials and energy input to the manufacturing process have been included, except for direct emissions to air, water, and soil, which are not measured. The inventory process in this LCA includes all data related to raw material, packaging material and consumable items. Process energy, water use, and discharge are included, except the production waste and non-production waste.

hre

LCA Results - 0.063 kg/m of Excel Solid Cat6A Cable U/FTP LSOH CPR Euroclass B2ca 305m

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts										
			GWP- total	GWP- fossil	GWP- biogenic	GWP- luluc	ODP	AP	EP- freshwat er	
			kg CO ₂ eq	kg CO ₂ eq	kg CO ₂ eq	kg CO ₂ eq	kg CFC11 eq	mol H ⁺ eq	kg (PO ₄) ³⁻ eq	
	Raw material supply	A1	2.65E-01	2.64E-01	5.83E-04	4.65E-04	1.59E-08	1.44E-02	1.13E-03	
Product stage	Transport	A2	1.77E-02	1.77E-02	2.19E-06	1.14E-05	3.65E-09	4.48E-04	7.18E-07	
	Manufacturing	A3	4.76E-02	7.66E-02	-2.90E-02	3.73E-05	1.17E-09	4.03E-04	1.50E-05	
	Total (Consumption grid)	A1-3	3.30E-01	3.58E-01	-2.85E-02	5.14E-04	2.07E-08	1.53E-02	1.14E-03	
Construction	Transport	A4	1.80E-03	1.80E-03	1.54E-06	7.07E-07	4.17E-10	7.31E-06	1.16E-07	
process stage	Construction	A5	3.51E-02	1.58E-02	1.93E-02	1.65E-05	1.20E-09	4.68E-04	3.57E-05	
97.2% - Recycling & 2.8% Landfill										
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
End of life	Transport	C2	1.31E-04	1.31E-04	1.12E-07	5.14E-08	3.03E-11	5.31E-07	8.43E-09	
End of life	Waste processing	C3	1.35E-01	1.35E-01	2.66E-04	3.08E-05	1.57E-08	1.99E-04	3.77E-05	
	Disposal	C4	6.69E-04	6.70E-04	-1.44E-06	4.14E-07	4.71E-11	1.88E-06	8.77E-08	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-4.31E-01	-4.30E-01	1.65E-04	-5.11E-04	-1.50E-08	-1.48E-02	-1.11E-03	
100% - Landfill										
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
End of life	Transport	C2	1.31E-04	1.31E-04	1.12E-07	5.14E-08	3.03E-11	5.31E-07	8.43E-09	
	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	Disposal	C4	1.53E-01	1.53E-01	1.87E-04	3.49E-05	1.81E-08	2.29E-04	4.31E-05	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

GWP-total = Global warming potential, total; GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change;

ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters d	escribing env	ironm	ental im	pacts					
			EP- marine	EP- terrestrial	POCP	ADP- mineral &metal	ADP- fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq deprived	disease incidence
	Raw material supply	A1	7.61E-04	1.03E-02	2.92E-03	3.36E-04	3.74E+00	2.57E-01	4.08E-08
	Transport	A2	1.11E-04	1.23E-03	3.22E-04	3.35E-08	2.36E-01	6.99E-04	7.94E-10
Product stage	Manufacturing	A3	8.82E-05	9.43E-04	2.57E-04	1.12E-07	7.29E-01	6.92E-02	5.73E-09
	Total (Consumption grid)	A1-3	9.61E-04	1.25E-02	3.50E-03	3.36E-04	4.71E+00	3.26E-01	4.73E-08
Construction	Transport	A4	2.20E-06	2.41E-05	7.37E-06	6.26E-09	2.72E-02	1.23E-04	1.55E-10
process stage	Construction	A5	3.16E-05	4.00E-04	1.12E-04	1.01E-05	1.65E-01	1.04E-02	1.51E-09
97.2% - Recycling & 2.8% - Landfill									
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	1.60E-07	1.75E-06	5.35E-07	4.55E-10	1.98E-03	8.90E-06	1.13E-11
End of life	Waste processing	C3	4.53E-05	4.41E-04	1.21E-04	2.74E-07	6.30E-01	2.05E-02	1.96E-09
	Disposal	C4	7.24E-07	5.70E-06	1.87E-06	3.32E-09	6.56E-03	1.54E-04	3.87E-11
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-8.63E-04	-1.13E-02	-3.28E-03	-3.26E-04	-5.94E+00	-2.97E-01	-4.68E-08
100% - Landfill									
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	1.60E-07	1.75E-06	5.35E-07	4.55E-10	1.98E-03	8.90E-06	1.13E-11
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	4.98E-05	4.91E-04	1.34E-04	3.04E-07	7.19E-01	2.23E-02	2.15E-09
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, accumulated exceedance;

POCP = Formation potential of tropospheric ozone; ADP-mineral&metals = Abiotic depletion potential for non-fossil

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

resources;

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters de	escribing envi	ronme	ntal impacts				
			IRP	ETP-fw	HTP-c	HTP-nc	SQP
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless
	Raw material supply	A1	2.51E-02	1.14E+02	2.68E-09	1.87E-07	4.65E+00
	Transport	A2	1.11E-03	1.56E-01	9.65E-12	1.22E-10	6.87E-02
Product stage	Manufacturing	A3	2.01E-03	1.92E+00	5.48E-11	8.47E-10	2.69E+00
	Total (Consumption grid)	A1-3	2.82E-02	1.16E+02	2.75E-09	1.88E-07	7.41E+00
Construction	Transport	A4	1.40E-04	2.13E-02	6.88E-13	2.23E-11	1.87E-02
process stage	Construction	A5	9.97E-04	3.58E+00	8.60E-11	5.72E-09	2.28E-01
97.2% - Recycling a	& 2.8% - Landfill						
End of life	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	1.02E-05	1.54E-03	5.00E-14	1.62E-12	1.36E-03
	Waste processing	C3	4.16E-03	2.60E+00	8.54E-11	9.80E-10	1.48E-01
	Disposal	C4	3.54E-05	6.54E-03	8.06E-13	7.12E-12	5.12E-03
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.11E-02	-1.12E+02	-2.60E-09	-1.83E-07	-4.63E+00
100% - Landfill							
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	1.02E-05	1.54E-03	5.00E-14	1.62E-12	1.36E-03
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	4.69E-03	2.96E+00	9.53E-11	1.11E-09	1.53E-01
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

LCA Results (continued)

Parameters describing resource use, primary energy									
			PERE	PERM	PERT	PENRE	PENRM	PENRT	
			MJ	MJ	MJ	MJ	MJ	MJ	
	Raw material supply	A1	2.19E+00	0.00E+00	2.19E+00	3.11E+00	4.46E-01	3.56E+00	
	Transport	A2	2.08E-03	0.00E+00	2.08E-03	2.32E-01	0.00E+00	2.32E-01	
Product stage	Manufacturing	A3	4.74E-01	2.79E-01	7.53E-01	2.92E+00	2.01E-02	2.95E+00	
	Total (Consumption grid)	A1-3	2.66E+00	2.79E-01	2.94E+00	6.27E+00	4.66E-01	6.73E+00	
Construction	Transport	A4	3.84E-04	0.00E+00	3.84E-04	2.67E-02	0.00E+00	2.67E-02	
process stage		A5	7.99E-02	8.38E-03	8.83E-02	1.88E-01	1.40E-02	2.02E-01	
97.2% - Recycling & 2.8% - Landfill									
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
End of life	Transport	C2	2.79E-05	0.00E+00	2.79E-05	1.94E-03	0.00E+00	1.94E-03	
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	-2.59E-01	2.59E-01	0.00E+00	
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	-7.64E-02	7.64E-02	0.00E+00	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.05E+00	0.00E+00	-2.05E+00	-1.96E+00	0.00E+00	-1.96E+00	
100% - Landfill									
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	Transport	C2	2.79E-05	0.00E+00	2.79E-05	1.94E-03	0.00E+00	1.94E-03	
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	Disposal	C4	3.01E-02	0.00E+00	3.01E-02	-3.62E-01	1.07E+00	7.09E-01	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

LCA Results (continued)

Parameters des	cribing resour	ce use,	secondary ma	terials and fuels, u	use of water	
			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m³
	Raw material supply	A1	1.63E-03	0.00E+00	0.00E+00	6.30E-03
	Transport	A2	0.00E+00	0.00E+00	0.00E+00	1.73E-05
Product stage	Manufacturing	A3	0.00E+00	0.00E+00	0.00E+00	1.68E-03
	Total (Consumption grid)	A1-3	1.63E-03	0.00E+00	0.00E+00	7.99E-03
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	3.04E-06
process stage	Construction	A5	4.89E-05	0.00E+00	0.00E+00	2.54E-04
97.2% - Recycling &	& 2.8% - Landfill					
End of life	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	0.00E+00	0.00E+00	0.00E+00	2.21E-07
	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	4.95E-04
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	3.72E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	-7.24E-03
100% - Landfill						
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	2.21E-07
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	5.36E-04
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

LCA Results (continued)

			HWD	NHWD	RWD	
		-	kg	kg	kg	
	Raw material supply	A1	1.01E-01	3.43E+00	1.91E-05	
	Transport	A2	3.00E-04	3.15E-03	1.63E-06	
Product stage	Manufacturing	A3	4.23E-02	2.77E-01	2.00E-06	
	Total (Consumption grid)	A1-3	1.44E-01	3.71E+00	2.28E-05	
Construction	Transport	A4	3.00E-05	5.33E-04	1.84E-07	
process stage	Construction	A5	4.31E-03	1.11E-01	6.83E-07	
97.2% - Recycling &	& 2.8% - Landfill					
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	
	Transport	C2	2.18E-06	3.87E-05	1.34E-08	
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-5.37E-02	-3.10E+00	-1.37E-05	
100% - Landfill						
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	
	Transport	C2	2.18E-06	3.87E-05	1.34E-08	
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	
	Disposal	C4	8.95E-02	4.37E-02	4.23E-06	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

LCA Results (continued)

			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging)
			kg	kg	kg	MJ per energy carrier	kg C	kg C
	Raw material supply	A1	0.00E+00	1.25E-05	4.92E-08	3.05E-03	0.00E+00	0.00E+00
	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Product stage	Manufacturing	A3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.95E-01
	Total (Consumption grid)	A1-3	0.00E+00	1.25E-05	4.92E-08	3.05E-03	0.00E+00	5.95E-01
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
process stage	Construction	A5	0.00E+00	3.74E-07	1.47E-09	9.17E-05	0.00E+00	0.00E+00
97.2% - Recycling & 2.8% - Landfill								
End of life	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Waste processing	C3	0.00E+00	6.12E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
100% - Landfill								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Date of Issue:19 September 2023 Page 15 of 18

Scenarios and additional technical information

Scenario	Parameter	Units	Results							
	Mayflex receives the cable from PRC and without any further processing in the distribution sector they will be distributed to the customer site.									
A4 – Transport to the	Fuel type / Vehicle type	Road transport	16–32-ton lorry							
building site	Distance: Mayflex to customer site	Km	172							
	Capacity utilisation (incl. empty returns)	%	49							
	Bulk density of transported products	kg/m³	342							
A5 – Installation in the building	nstallation of data cables is carried out by manual labour - teams of operatives pulling lressing cables. No powered equipment or consumable items are used in this process, so vaste is generated during the installation. But there are some wastes at the end of the box, was assumed as 3% of the cables waste; this will be collected and sent to recycling.									
Cable wastes	Cable offcuts – Copper and plastic insulation	Incinerated	0.002kg							
Packaging	Wooden Pallets	Incinerated	0.0038 kg							
	Cable drums	Incinerated	0.01 kg							
End of life	Cables are removed manually from the building sites. Therefore, no energy is associated whi removing the cables from the building.									
C2 – Transportation	Recovered cables are taken back by the registered broker	Road transport	16–32-ton lorry							
	Distance: Deconstruction unit to pre-processing unit	km	12.5							
C3 – Pre processing	Cat6A Cable FTP cables are made of copper, polymer, polyethylene, and other materials. At the end-of-life, cables are removed manually from the building sites, and they will be sent to pre processing unit. At the pre-processing unit, waste cables are shredded first to decrease their size and the metallic parts are separated from plastics physically by using gravity and electrostatic separation techniques. The copper is recovered from other metallic elements by smelting and refining. The shredding and separation, and smelting processes have not been included in module C3 because it is assumed to be very small and are effectively negligible. (Celik et al. 2019).									
	Recovered cable to recycling	%	97.2							
C4 - Disposal	The recovered cable is sent recycling while a small portion i which is considered to send to landfill.	s assumed to be u	nrecoverable							
	Unrecoverable cable to landfill	%	2.8							
	It is assumed that 97.2% of the cable used in the construction recycling and remaining 2.8% is sent to landfill. The calculat loss during the recycling process. Recycling (97.2%): 0.0612 kg/m. Landfill (2.8%): 0.0018 kg/m.									
Module D	Copper – Recycled	kg/m	0.0242							
	Polyethylene – Recycled	kg/m	0.0061							
	Aluminium – Recycled	kg/m	0.0058							
	Co-Polymer – Recycled	kg/m	0.0251							

Interpretation of results:

The bulk of the environmental impacts are attributed to the manufacturing of Cat6A FTP cables covered by information modules A1-A3 of EN15804:2012+A2:2019.

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

Çelik, C., Arslan, C. and Arslan, F., 2019. Recycling of waste electrical cables. Material Science & Engineering International Journal, 3(4), pp.107-111.

Technical properties for CAT6A U/FTP, F/FTP & S/FTP cables:

Part Number	100-914	190-914	100-915	100-996	190-996	190-191	190-191- 305M	190- 191-WT			
Screen Type	S/FTP	S/FTP	S/FTP	F/FTP	F/FTP	U/FTP	U/FTP	U/FTP			
CPR Rating	Dca s2 d2 a2	B2ca s1a d1 a1	Dca s2 d2 a2	Dca s2 d2 a1	B2ca s1a d1 a1	B2ca s1a d1 a1	B2ca s1a d1 a1	B2ca s1a d1 a1			
Single/Dual	Single	Single	Dual	Single	Single	Single	Single	Single			
Colour	White	White	White	Ice Blue	Ice Blue	Ice Blue	Ice Blue	White			
Conductor AWG	23	23	23	23	23	23	23	23			
No. of Conductors				8	3						
Conductor Insulation	PE										
Sheath Material				Co-Polym	ner LSOH						
Cable Diameter	7.5mm	7.6mm	7.6x15mm	7.6mm	7.6mm	7.4mm	7.4mm	7.4mm			
Temperature	-20C to	-20C to	-20C to	-20C to	-20C to	-20C to	-20C to	-20C to			
Range	+70C	+70C	+70C	+60C	+60C	+60C	+60C	+60C			
NVP	74%	74%	74%	76%	76%	76%	76%	76%			
Dielectric	2.5kV	2.5kV	2.5kV for	1kV for	1kV for	2.5kV	2.5kV for	2.5kV			
Strength	for 2s	for 2s	2s	2s	2s	for 2s	2s	for 2s			
Max. Pulling Load	60N	60N	60N	90N	90N	60N	60N	60N			
Min. Bend (installation)		8x Cable OD									
Min. Bend (installed)				4x Cal	ble OD						